Perma－Column Installation Instructions

Unlike any other concrete post－frame foundation system，Perma－Column Precast Concrete Piers use 10，000 psi concrete and our unique Sturdi－Wall Plus wet－set bracket design to achieve shear and moment capacity comparable to a treated wood post or column set in soil．This allows Perma－Columns and Sturdi－Wall Plus brackets to be confidently used in place of a soil－embedded wood column as an＂as good or better＂ substitution in standard designs．Other brackets，such as the drill－set Sturdi－Wall bracket，provide less shear strength and a pin connection instead of a moment connection；additional lateral and／or knee bracing may be required．

Perma－Columns provide you a variety of foundation options to choose from：

1．Concrete or composite footings with Uplift Anchors；2．Concrete collar；3．Column extender；
The quickest and easiest way to install a Perma－Column is to attach an Uplift Anchor to the bottom of the Perma－Column，place the entire assembly on a pre－cast concrete footing or composite FootingPad，and backfill with dirt．Unless it is required for sound reason（such as abnormal uplift－resisting characteristics of soils in your specific area）you may simply tamp the soil taken from your hole around the Perma－Column while holding it plumb．If you do not have pre－cast or composite footings，you may pour at least 6 ＂wet concrete in the bottom of the hole and place the Perma－Column on top after the concrete has set．ASABE 486.2 allows in－situ hydration of dry concrete，so unless prohibited by local codes you may alternatively add at least 6＂of dry concrete to create a footing and place the Perma－Column on top if you take care to avoid shifting of the dry concrete．There is no need to add concrete around the Uplift Anchors that attach at the bottom of the Perma－Column，they are available in different lengths to provide different uplift characteristics． In place of an Uplift Anchor，you may instead＂concrete collar＂the bottom of the Perma－Column with a minimum $81 / 2$＂stick of $1 / 2$＂diameter rebar or 1 ＇or 2 ＇column extender，similar to how many builders install treated posts embedded in soil．
www．HeartlandPermaColumn．com • info＠HeartlandPermaColumn．com

Sturdi－Wall drill－set brackets and Sturdi－Wall Plus wet－set brackets

Two universal drill－set brackets in corners or doorways with：8．Laminated columns 9．Solid－sawn posts
For the Sturdi－Wall drill－set brackets，a 5／8＂screw－type，expanding or epoxy concrete anchor is used；or anchor＂L－Bolts＂may be set in wet concrete with threads protruding up．The type of fastener used determines the ultimate strength of the bracket，as it is the weakest link．Grade 5 hardware must be used to attach the bracket to the wood with all of these products，otherwise the wood－to－bracket connection will be the weakest link．Consult the Perma－Column and Sturdi－Wall design guides for specific engineering data， and Table 6.1 comparing Allowable Shear and Uplift for Standard Sturdi－Wall Anchor Brackets．
To attach Sturdi－Wall drill－set brackets on concrete，consult installation instructions provided for the concrete anchor of your choice．To install Sturdi－Wall Plus wet－set brackets，carefully locate where the bracket should go and slide the rebar along a level into wet concrete，or use a jig to brace the bracket in place while you add wet concrete．Perma－Columns and Sturdi－Wall Plus brackets work best in corners and doorways； to keep drill－set brackets from protruding into a doorway or out the corner of a building use methods similar to those illustrated in \＃8 and \＃9 above．
Note also that unlike Perma－Columns and Sturdi－Wall Plus wet－set brackets，drill－set brackets are not comparable to an embedded wood post in terms of shear and moment；additional bracing may be required．

Heartland Heartland Perma－Column

Minimum Concrete Thickness for Brackets

Sturdi－Wall Drill－Set Brackets

Critical Anchor Dimensions in Concrete						
Anchor Type	SW46，SW63，SW64，SW66，SW60			SW83，SW84，SW80		
	1 （in）	11 （in）	III（in）	1 （in）	11 （in）	III（in）
5／8＂Anchor＂L＂Bolts	4	8	8.375	5	8	9.375
5／8＂Epoxy Anchor	4	5	8.375	5	5	9.375
1／2＂Expansion Anchors	4	3.5	8.375	5	3.5	9.375
5／8＂Expansion Anchors	－	－	－	5	4	9.375
5／8＂Screw Anchor	4	4.5	8.375	5	4.5	9.375
Notes：	$\begin{array}{\|l} \hline \text { I = Min. distance to concrete edge } \\ \text { II = Min. embedment depth into concrete } \\ \text { III = Min. Center to Center Dimension } \\ \hline \end{array}$					

Sturdi－Wall Plus Wet－Set Brackets
Minimum Concrete Pier Diameter
Pier Bracket by Perma－Column

NOTE：Although the SWP bracket design is essentially the same as the Perma－Column bracket above the concrete，Perma－ Columns are made of 10，000 psi concrete so the concrete pier may be the same size as the bracket and post above it．

Perma－Columns are patented and manufactured under license．

[^0]

Heartland
 Heartland Perma－Column

1841 E 1450 Rd．•Lawrence，KS 66044 •（785）594－5696 www．HeartlandPermaColumn．com • info＠HeartlandPermaColumn．com

Sturdi－Wall Bracket Installation in Corners and Doorways

It is not recommended that one SW60 be used on posts unless the structure has been engineered with this in mind．＊
For corner or doorway posts，two SW60 brackets are typically installed on adjacent instead of opposite sides of the post．If using three－ply laminated columns，there are options for installing two brackets，first if using the HW10 screw－type anchor：

Note：Edge distance inadequate for $\frac{1}{2}$＂\varnothing and $\frac{5}{8} \varnothing$ expansion anchors per Table 7.2
Or，if using a $1 / 2$＂expansion anchor：
 ${ }_{8}^{5}$＂\varnothing expansion anchors per Table 7.2
Or，using the SW6C，which is 4 ＂wide and has additional screw holes：

FロUNDATIロNS FロR ECロNDMICAL，EFFICIENT AND ECロ－

HW10 Orange－Tip Wedge－ Bolt Screw－Type Anchor －5／8＂Anchor and Bit Installation Procedure

Select the proper diameter Wedge－Bit for 410 Stainless Steel Wedge－ Bolt installations or proper
diameter ANSI
drill bit for Wedge－Bolt OT
installations．ANSI drill bits must
meet the requirements
of ANSI Standard
B212．15．
Using the proper drill bit，drill a hole into the base material to a depth of at least one anchor diameter deeper than the embedment required．

Insert the anchor through the fixture into the anchor hole．
Begin
tightening the
anchor with socket wrench

by rotating
clockwise and applying
pressure in toward the base material．A powered impact wench may also be used． This will engage the first few threads as the anchor begins to advance．

Continue

 tightening the anchor until the head is firmly seated against the fixture while achieving the required embedment depth．
Heartland
 PERMA
 COLUMN

Heartland Perma－Column

1841 E 1450 Rd．•Lawrence，KS 66044 •（785）594－5696
www．HeartlandPermaColumn．com • info＠HeartlandPermaColumn．com

Post Hole Digging Requirements

Perma－Column Trims and Column Placement

Plan before you start －make sure your posts will line up in the right place．
Consider the thickness of brackets，doors and corner installations－ you may need to move the post back to account for filler and steel bracket materials as shown in these illustrations．
This is also crucial for setting brackets， the trim details work in the same way． Drill－set brackets need additional considerations to accommodate the flange，covered in other parts of this guide．
Your posts may not be on－center at doorways and corners，but offset to compensate．
You may also need to end－nail one wall girt to another one because the steel bracket may block fasteners on one side．
－For required PC embedment depth，consult a design a professional．
－Concrete portion of PC＇s to be flush with the sidewall girt line．
－Overhead door openings to be $3^{\prime \prime}$ wider than desired finished opening to accommodate $11 / 2^{\prime \prime}$ PC bracket trim－out．（G）
－Slide door openings to be the same as the desired finished opening． PC brackets intrude into the slide door opening by $3 / 8^{\prime \prime}$ ．（H）
－Dig post hole depth so all PC brackets are at a uniform height．If adjustment is necessary，use tamped gravel．
－If bedrock is contacted at a post hole location，the bottom of the PC may be cut off using a masonry saw．The uplift anchor hole will need to be redrilled using a $9 / 16^{\prime \prime}$ masonry drill bit．

OHD DOOR JAMB

SLIDE DOOR JAMB

IF MORE BEARING IS
REQUIRED，USE A
4－PLY COLUMN

WOOD HEADER OR STEEL BEAM
（H）

Column Placement and Leveling

1．Attach a $3 / 8^{\prime \prime}$ wood filler to the（4）corner columns to make girts and skirt flush．（I）
2．Lift multiple PC assemblies with a skid loader and drive along the post hole line．
3．Place concrete pad in bottom of hole prior to setting PC．Consult design professional to determine thickness of concrete pad．
4．Tilt PC assemblies off skid loader forks into post hole．（J）
5．Plumb the PC columns using standard leveling procedures．（K）
6．Backfill post holes with appropriate materials，tamping 6 ＂layers until hole is filled．

Heartland
 PERMA

 Heartland Perma－Column1841 E 1450 Rd．•Lawrence，KS 66044 •（785）594－5696
www．HeartlandPermaColumn．com • info＠HeartlandPermaColumn．com

Footing Options

Q．How do I do the footing at the bottom of the hole？
A．First，to make them even in height／depth attach a transit to the boom on your auger or tape a $1 \mathrm{x"}$ strip of wood to the bottom of the transit that extends below grade to dig hole bottoms to the same depth．If you don＇t have a transit you may use a marked stick and line the mark up with your guide lines．The post or the outside plies on top of
 a wood laminated column may stick up higher than the truss－cut them off later．The pocket in a laminated column may be lower than your bottom chord height so you can insert a block precisely the right length between plies to make the bottom of the truss the right height；or notch or bolt a block on a solid－sawn post at bottom chord height．From there， you have several options：

Uplift Options：

Galvanized Steel Uplift Anchors OR $1 / 2 "$ piece of rebar with at least 3 ＂concrete coverage above for Concrete Collar．

Footing Options：Composite FootingPad OR Perma－Pad Precast Concrete Pad OR Cast 6＂wet concrete and allow to set OR Place 6＂dry concrete for in－situ hydration of concrete．

1．Use a recycled plastic composite FootingPad（appox． 5 lbs．）OR Perma－Pad PreCast Concrete Footing（approx．60－100 lbs．）
a．Tamp bottom of hole
b．OPTIONAL：Add 1－2 inches sand or dry concrete to the bottom of the hole if you have trouble getting the bottom flat and／or even
c．Place the Composite FootingPad or pre－cast concrete footing in the bottom of the hole
d．Attach Uplift Anchors to the Perma－Column and lower the Perma－Column on top of the FootingPad or Perma－Pad pre－cast concrete footing．NOTE：Excessive force may break concrete or composite footings－Carefully lower Perma－Columns onto footings；do not drop them．
2．Pour a concrete footing
a．Tamp bottom of hole
b．Add 6 ＂of wet concrete and allow to harden；OR add 6 ＂of dry concrete if you may use in－situ hydration of dry concrete（i．e．，allow ground moisture to set the concrete or add water after backfilling with dirt；the latest ASABE 486.2 post embedment standard approves in－situ hydration of concrete footings，so the ground humidity may set the concrete or you can water the holes after installing girts if the ground is dry）．NOTE：some jurisdictions will not allow in－ situ hydration and it is possible shifting or settling may occur in some instances（installation and bracing of the bottom girt to soil before watering the holes or rains come may prevent shifting or settling）．
c．Place the Perma－Column atop the 6 ＂of concrete with uplift anchors attached and backfill with dirt；OR insert $1 / 2$＂rebar where uplift anchors go and add another 6 ＂dry or wet concrete to create a concrete collar that extends at least 3 ＂above the rebar at the bottom of the Perma－ Column to prevent uplift．NOTE：Excessive force may break cured concrete footings or displace dry concrete；Carefully lower Perma－Columns onto footings－do not drop them．

Precast Concrete Pads are typically 6 ＂thick．Perma－ Pads made of our special concrete more than twice the PSI strength of typical concrete may be half as thick．

The FootingPad is made of recycled plastic composite and weighs about 5 lbs ．The 16＂dia．FootingPad may carry a load of more than 4000 lbs ．per post．

Heartland
 Heartland Perma－Column

1841 E 1450 Rd．•Lawrence，KS 66044 •（785）594－5696
www．HeartlandPermaColumn．com • info＠HeartlandPermaColumn．com

Hardware Requirements

Q．What kind of hardware is required？

A．Hardware typically available at most stores is inadequate．Grade 5 hardware is required as this is the weakest link in the column assembly．Most hardware is Grade 2，and may not be properly treated to resist corrosion．Grade 5 washers，locking flange nuts，hex－head bolts and flange－head screws must be used to attach the wood column to a Perma－Column．Use a washer on the hex－head bolt side of the bracket and a flange nut on the other side．Note：When drilling the $1 / 2$ inch hole in the wood column do not wallow out the hole to get alignment－it may be necessary to drill from both sides of the bracket．Bolts should be tightened to $110-120$ foot pounds．Heartland Perma－Column provides required hardware at your request to fit your particular project．
Q．How do I attach the bottom girt（aka＂splash plank，＂＂splashboard，＂＂rat guard＂or＂skirt board＂）？
A．Do not use tap－cons or other screw－type concrete anchors．Hammer－drill a 3／16＂diameter hole through the bottom girt and into the concrete；you may want to install the next－to－bottom girt first and use a hanger to hold the bottom girt in place while you drill．Install split drive anchors at least $1-3 / 4$＂from edge，angling 10° toward center of the column to keep from hitting the rebar with your masonry drill．Cut bottom girts so butt joints are centered directly under the wood column． Use two hot－dipped galvanized split－drive anchors to secure each end of the bottom girt to the Perma－Column；if the girt is twice as long as your bay spacing，put two split－drive anchors in the middle of the board．We figure 3.5 times the number of posts per row of＂splashboard＂is typically how many you＇ll need．

Typical Doorway Frame：

1．Install first row of sidewall girts before attaching the skirtboard．The skirtboard will be hung from this first row of girts．
Make two skirt hangers to allow for hands free skirt placement．（L）
－Using a $2^{\prime \prime} \times 4^{\prime \prime}$ board，cut the board to the proper length to hang the skirtboard．
－Attach a metal＂C＂bracket（ $11 / 2^{\prime \prime}$ pocket）to this board to hang over the bottom girt row．
－Attach a metal＂L＂bracket（ $11 / 2$＂seat）to this board to hang the skirtboard in place．
2．Hang the skirtboard from the first girt row using skirt hanger while drilling and attaching．
3．Drill a $3 / 16^{\prime \prime}$ hole through the skirt board and $2^{\prime \prime}$ into the concrete post using a hammer drill．（M）
NOTE：Angle the drill toward the center of the concrete post to avoid hitting the interior rebar．（E page 2）
4．Drive a $3 / 16^{\prime \prime} \times 3^{\prime \prime}$ Powers stainless steel split drive anchor（PC3DA－SS）into the post until the skirt is secure．（N）

（ N ）

COLUMN

Options to Trim Out the Bracket

Porch Post Trim Detail

1．Porch posts can be trimmed－out using the following methods．

Another Option：add trimmed outside plies and face with planks

Below－Grade insulation options for a concrete slab－on－grade： （a）vertical and horizontal wing insulation for heated buildings； （b）vertical insulation only for heated buildings that may extend as much as twice as deep in soil than if wing insulation is not used；（c） insulation on outside and underside of perimeter edge for unheated building to prevent structural heaving；and（d） insulation on the outside edge and entire underside of slab to prevent both structural and floor heaving www．HeartlandPermaColumn．com • info＠HeartlandPermaColumn．com

Detail showing precast concrete piers with a grade beam or＂ribbon，＂which may be commonly referred to as a＂necklace．＂Text in black font describes steps for placing insulation on edge to a depth of 24 ＂similar to techniques shown on previous page item（b）；text in red describes measures to install wing insulation similar to techniques shown in previous page item（a）．
PERMA-COLUMN POST SIZING CHART

POST BLDG TTL TTL				TOTAL ROOF LOAD 30		To be used for Estimating purposes only and Engineer of record is required Condition 1 / DL increase of 1.2 / LL increase of 1.6 / Building Length not to exceed $21 / 2$ times the width						
FT.	FT.	DL	LL			8' UNDER TRUSS	10' UNDER TRUSS	12' UNDER TRUSS	14' UNDER TRUSS	16' UNDER TRUSS	18' UNDER TRUSS	20' UNDER TRUSS
8	24	10	20	=	4.22 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLY X 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	26	10	20	=	4.58 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	28	10	20	=	4.93 KIPS	4" X 6" SYP POST	$4 " \times 6 "$ SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	3 PLYX6\#1SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	30	10	20	=	5.28 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY X 8 \# 1 SYP
8	32	10	20	$=$	5.63 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$66^{\prime \prime} \times 6$ " SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	34	10	20	$=$	5.98 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLY 8 \# 1 SYP
8	36	10	20	$=$	6.34 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$66^{\prime \prime} \times 6$ ' SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	38	10	20	=	6.69 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	40	10	20	=	7.04 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	42	10	20	$=$	7.39 KIPS	4" $\times 6$ " SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLY 8 \# 1 SYP
8	44	10	20	=	7.74 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	46	10	20	=	8.10 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLY 8 \# 1 SYP
8	48	10	20	=	8.45 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	50	10	20	=	8.80 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY X 8 \# 1 SYP
8	52	10	20	$=$	9.15 KIPS	$4 " \times 6$ " SYP POST	4" X 6" SYP POST	$6 "$ X 6 " SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY X 8 \# 1 SYP
8	54	10	20	$=$	9.50 KIPS	4" $\times 6$ " SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	56	10	20	$=$	9.86 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	58	10	20	$=$	10.21 KIPS	4" X 6" SYP POST	$4 " \mathrm{X} 6$ " SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ " SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	60	10	20	=	10.56 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	62	10	20	$=$	10.91 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	64	10	20	=	11.26 KIPS	4"X6" SYP POST	$6 "$ X 6 " SYP POST	$6 "$ X 6 " SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	66	10	20	$=$	11.62 KIPS	$4 " \times 6$ " SYP POST	$6 "$ X 6 " SYP POST	$6 "$ X 6 " SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	68	10	20	$=$	11.97 KIPS	4" $\times 6$ " SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX6\#1SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	70	10	20	=	12.32 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY X 8 \# 1 SYP
8	72	10	20	$=$	12.67 KIPS	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	74	10	20	$=$	13.02 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	76	10	20	$=$	13.38 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	$6 "$ X 6 " SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	78	10	20	$=$	13.73 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	80	10	20	$=$	14.08 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	4 PLY X 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	82	10	20	=	14.43 KIPS	4" X 6" SYP POST	$6 " \mathrm{X} 6$ " SYP POST	$6 " \mathrm{X} 6 \mathrm{6} \mathrm{\prime}$ SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	84	10	20	$=$	14.78 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	86	10	20	$=$	15.14 KIPS	4" $\times 6$ " SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP
8	88	10	20	$=$	15.49 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP
8	90	10	20	=	15.84 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	92	10	20	$=$	16.19 KIPS	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX8\#1 SYP	3 PLY X 8 \# 1 SYP
8	94	10	20	=	16.54 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP
8	96	10	20	$=$	16.90 KIPS	4" X 6" SYP POST	$6 " \times 6$ " SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP
8	98	10	20	=	17.25 KIPS	4" X 6" SYP POST	$6 " \times 6$ " SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP

PERMA-COLUMN POST SIZING CHART

POST BLDG TTL TTL				TOTAL ROOFLOAD40 $\|$		To be used for Estimating purposes only and Engineer of record is required Condition 1 / DL increase of 1.2 / LL increase of 1.6 / Building Length not to exceed $21 / 2$ times the width						
FT.	FT.	DL	LL			8' UNDER TRUSS	10' UNDER TRUSS	12' UNDER TRUSS	14' UNDER TRUSS	16' UNDER TRUSS	18' UNDER TRUSS	20' UNDER TRUSS
8	24	10	30	=	5.76 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLY X 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	26	10	30	=	6.24 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	28	10	30	=	6.72 KIPS	4" X 6" SYP POST	$4 " \times 6 "$ SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	3 PLYX6\#1SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	30	10	30	=	7.20 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	32	10	30	$=$	7.68 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$66^{\prime \prime} \times 6$ " SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	34	10	30	$=$	8.16 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	36	10	30	$=$	8.64 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$66^{\prime \prime} \times 6$ ' SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	38	10	30	=	9.12 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX6\#1SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP
8	40	10	30	=	9.60 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLY X 6 \# 1 SYP	3 PLY 8 \# 1 SYP
8	42	10	30	$=$	10.08 KIPS	4" $\times 6$ " SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	44	10	30	$=$	10.56 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	46	10	30	=	11.04 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	48	10	30	=	11.52 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX8\#1 SYP
8	50	10	30	=	12.00 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLY X 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	52	10	30	$=$	12.48 KIPS	4" $\times 6$ " SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	54	10	30	$=$	12.96 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	56	10	30	=	13.44 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	58	10	30	$=$	13.92 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ " SYP POST	4PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	60	10	30	=	14.40 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	4 PLY X 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	62	10	30	$=$	14.88 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	64	10	30	=	15.36 KIPS	4"X6" SYP POST	$6 "$ X 6 " SYP POST	$6 "$ X 6 " SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX8\#1 SYP
8	66	10	30	$=$	15.84 KIPS	$4 " \times 6$ " SYP POST	$6 "$ X 6 " SYP POST	$6 "$ X 6 " SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	68	10	30	$=$	16.32 KIPS	4" $\times 6$ " SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	70	10	30	=	16.80 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	72	10	30	$=$	17.28 KIPS	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	74	10	30	$=$	17.76 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	76	10	30	$=$	18.24 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	$6 "$ X 6 " SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX8\#1 SYP
8	78	10	30	$=$	18.72 KIPS	4" $\times 6$ " SYP POST	$6 "$ X 6" SYP POST	$6 " \times 6$ ' SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	80	10	30	$=$	19.20 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	82	10	30	$=$	19.68 KIPS	4" X 6" SYP POST	$6 " \mathrm{X} 6$ " SYP POST	$6 " \mathrm{X} 6 \mathrm{6} \mathrm{\prime}$ SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	4 PLY 8 \# 1 SYP
8	84	10	30	$=$	20.16 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	86	10	30	$=$	20.64 KIPS	4" $\times 6$ " SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	88	10	30	$=$	21.12 KIPS	4" $\times 6$ " SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	90	10	30	=	21.60 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY X 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	92	10	30	$=$	22.08 KIPS	6" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX8\#1 SYP
8	94	10	30	$=$	22.56 KIPS	6" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	96	10	30	$=$	23.04 KIPS	6" X 6" SYP POST	$6 " \times 6$ " SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	98	10	30	=	23.52 KIPS	6" \times 6" SYP POST	$6 " \times 6$ " SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLYX 8 \# 1 SYP

PERMA-COLUMN POST SIZING CHART

POST BLDG TTL TTL				$\begin{gathered} \text { TOTAL ROOF } \\ \text { LOAD } \\ 50 \end{gathered}$		To be used for Estimating purposes only and Engineer of record is required Condition 1 / DL increase of 1.2 / LL increase of 1.6 / Building Length not to exceed $21 / 2$ times the width						
FT.	FT.	DL	LL			8' UNDER TRUSS	10' UNDER TRUSS	12' UNDER TRUSS	14' UNDER TRUSS	16' UNDER TRUSS	18' UNDER TRUSS	20' UNDER TRUSS
8	24	10	40	$=$	7.30 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLY X 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	26	10	40	=	7.90 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \mathrm{X} 6 \mathrm{6} \mathrm{\prime}$ SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLY 8 \# 1 SYP
8	28	10	40	=	8.51 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 "$ X 6" SYP POST	3 PLYX6\#1SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	30	10	40	=	9.12 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLY X 6 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	32	10	40	=	9.73 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \mathrm{X} 6$ " SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	34	10	40	=	10.34 KIPS	4" X 6" SYP POST	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	36	10	40	=	10.94 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLY 8 \# 1 SYP
8	38	10	40	$=$	11.55 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6 "$ SYP POST	3 PLYX6\#1SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	40	10	40	$=$	12.16 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLY X 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	42	10	40	$=$	12.77 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	44	10	40	=	13.38 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	46	10	40	=	13.98 KIPS	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP
8	48	10	40	$=$	14.59 KIPS	4" X 6" SYP POST	$6 "$ X 6" SYP POST	$6 " \times 6$ " SYP POST	$6 "$ X 6" SYP POST	4 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX8\#1 SYP
8	50	10	40	$=$	15.20 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLY 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	52	10	40	$=$	15.81 KIPS	4" X 6" SYP POST	$6 " \mathrm{X} 6$ " SYP POST	6" X 6" SYP POST	$6 " \times 6 "$ SYP POST	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	3 PLYX8\#1 SYP
8	54	10	40	=	16.42 KIPS	4" X 6" SYP POST	$6 "$ X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 "$ X 6" SYP POST	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	56	10	40	$=$	17.02 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	3 PLYX8\#1 SYP
8	58	10	40	=	17.63 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ " SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX8\#1 SYP
8	60	10	40	=	18.24 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLY X 8 \# 1 SYP	3 PLY X 8 \# 1 SYP
8	62	10	40	$=$	18.85 KIPS	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP
8	64	10	40	=	19.46 KIPS	4" X 6" SYP POST	$6 " \mathrm{X} 6$ " SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	4 PLYX6\#1 SYP	3 PLY 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	66	10	40	$=$	20.06 KIPS	4" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	68	10	40	$=$	20.67 KIPS	4" X 6" SYP POST	$6 " \times 6 "$ SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	70	10	40	=	21.28 KIPS	4" X 6" SYP POST	6" X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	72	10	40	$=$	21.89 KIPS	4" X 6" SYP POST	$6 " \mathrm{X} 6$ " SYP POST	$6 " \mathrm{X} 6 \mathrm{\prime} \mathrm{\prime}$ SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	74	10	40	$=$	22.50 KIPS	6" X 6" SYP POST	$6 " \times 6$ ' SYP POST	$6 " \times 6$ ' SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	76	10	40	$=$	23.10 KIPS	6" X 6" SYP POST	$6 "$ X 6" SYP POST	6" X 6" SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	78	10	40	$=$	23.71 KIPS	6" X 6" SYP POST	$6 " \times 6$ " SYP POST	$6 " \times 6$ " SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX8\#1 SYP
8	80	10	40	=	24.32 KIPS	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY X 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	82	10	40	$=$	24.93 KIPS	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLY 8 \# 1 SYP	4 PLYX8\#1 SYP
8	84	10	40	$=$	25.54 KIPS	6" X 6" SYP POST	$6 " \times 6$ " SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8\#1 SYP	4 PLYX8\#1 SYP
8	86	10	40	$=$	26.14 KIPS	6" X 6" SYP POST	$6 " \mathrm{X} 6 \mathrm{6} \mathrm{\prime}$ SYP POST	3 PLYX 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLY 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	88	10	40	$=$	26.75 KIPS	6" X 6" SYP POST	$6 " \mathrm{X} 6$ " SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	90	10	40	=	27.36 KIPS	6" X 6" SYP POST	6" X 6" SYP POST	3 PLY X 6 \# 1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLY X 8 \# 1 SYP	4 PLY X 8 \# 1 SYP
8	92	10	40	$=$	27.97 KIPS	6" X 6" SYP POST	6" X 6" SYP POST	3 PLYX6\#1 SYP	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	4 PLY 8 \# 1 SYP	4 PLYX8\#1 SYP
8	94	10	40	$=$	28.58 KIPS	6" X 6" SYP POST	$6{ }^{\prime \prime} \times 6$ " SYP POST	3 PLYX6\#1 SYP	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLY 8 \# 1 SYP	4 PLYX 8 \# 1 SYP
8	96	10	40	$=$	29.18 KIPS	6" X 6" SYP POST	$6 " \times 6$ " SYP POST	4 PLYX 6 \# 1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLY X 8 \# 1 SYP	X
8	98	10	40	$=$	29.79 KIPS	6" $\times 6$ " SYP POST	6" X 6" SYP POST	4 PLYX6\#1 SYP	3 PLYX 8 \# 1 SYP	3 PLYX 8 \# 1 SYP	4 PLY X 8 \# 1 SYP	X

Perma-Column Design and Use Guide

With Installation Instructions

By:

engineering

Brent Leatherman, P.E.
Timber Tech Engineering, Inc. www.timbertecheng.com email: bl@timbertecheng.com

Table of Contents

1. Design Overview Page 2
2. Perma-Column Descriptions and Properties Page 2
3. Reinforced Concrete Base Column Design Page 6
4. Structural Reinforcing Bracket Assembly Design Page 6
5. Laminated Wood Column Design Page 10
6. Modeling Page 12
7. Perma-Column Design Chart Page 14
8. Design Example Page 16
9. Wind Uplift Resistance Page 18
10. Summary and Conclusion Page 21
11. Appendix 1 Page A1
12. Appendix 2 Page A4
13. Appendix 3 Page A15
14. Appendix 4 Page A22
15. Appendix 5 Page A40

Foreword

The following Design and Use Guide for PC6300, PC6400, PC6600, PC8300, PC8400, and PC8500 Models has been written by Brent Leatherman to help engineers apply information appearing in the Engineering Design Manual for Series 6300, 6400, 8300, 8400 Perma-Columns. I wrote the latter document after conducting a number of tests on Perma-Columns in my laboratory at the University of Wisconsin-Madison. In addition to a summary of UWMadison test results, the Engineering Design Manual contains details on how to calculate design properties for Perma-Columns. The Design and Use Guide reviews these procedures, and contains sample calculations and comparisons that you will not find in the Engineering Design Manual.

Perma-Columns are a more environmentally-friendly alternative to preservative-treated wood, and quite likely, a more durable alternative. Using the information contained in this document and in the Engineering Design Manual, an engineer can better ensure the structural integrity and safety of buildings incorporating Perma-Columns.

$$
\text { David } \mathbb{R} \text { Qsohnhoff, 刃h: 刃 } \otimes
$$

1. Design Overview

This guide is intended to be used by post-frame building engineers and designers as a companion document to the Engineering Design Manual for Series 6300, 6400, 8300, 8400 Perma-Columns (herein referred to as "the Perma-Column Test Report") by David R. Bohnhoff. Each Perma-Column assembly consists of:

- A reinforced precast concrete base column component designed according to the Building Code Requirements for Structural Concrete (ACI 318-11) by The American Concrete Institute (ACI).
- A structural reinforcing bracket assembly designed according to the Steel Construction Manual (14 ${ }^{\text {th }}$ Edition) by The American Institute of Steel Construction (AISC).
- A laminated or solid sawn wood column component designed according to the 2012 Edition of The National Design Specification for Wood Construction (NDS) by the American Wood Council (AWC).

Structural analysis was performed using both the load and resistance factor (LRFD) and the allowable stress/strength design (ASD) methodologies. This was done so the laboratory results from the Perma-Column Test Report, which is based on LRFD, could be used, while also expressing the expected column performance in terms of maximum allowable capacity as is customary in the wood industry.

This Design and Use Guide will cover properties and design procedures for the reinforced concrete base, the structural reinforcing bracket assembly connection, and the laminated wood columns. The procedure for creating models of the Perma-Column assemblies to simulate the results of laboratory testing is discussed. A Design Chart is presented for the Perma-Column assemblies with varying heights and boundary conditions. The failure modes and design limitations on each Perma-Column assembly are listed, and an example is given showing a straight forward design approach which can be applied to all Perma-Column assemblies. Finally, wind uplift resistance is calculated for a concrete collar or a compacted fill foundation condition.

2. Perma-Column Descriptions and Properties

Dimensions and material properties for the PC6300, PC6400, PC6600, PC8300, PC8400 and PC8500 models are given in Table 2.1. Variable definitions correspond to Figure 1.1 of the Perma-Column Test Report. The PC6600 and PC8500 were not included in the laboratory testing. The PC6600 is intended for new or replacement solid-sawn 6×6 posts, and the PC8500 is to be used with a 5 -ply 2×8 laminated wood column or 8×8 wood post.

Tables 2.2 through 2.4 give dimensions and section properties for several different wood column sizes and types that are included in this report: 6×6 solid-sawn; and 3 -ply 2×6, 4 -ply 2×6, 3 -ply 2×8, 4 -ply 2×8 and 5 -ply 2×8 mechanically laminated and glued laminated (glulam) wood columns. The mechanically laminated group consists of \#1 Southern Yellow Pine (SYP) and of \#2 and better Spruce Pine Fir (SPF) lumber using standard dressed sizes (surfaced four sides (S4S)); as well as \#1 SYP laminations which have been further planed for better visual appearance. The glulam group consists of SYP laminations which have been planed down as part of their standard fabrication process. Perma-Column models for use with glulam columns are identified with a "GL" at the end of the name. These models have a reduced inside dimension so as to fit tightly with the glulam products.

Table 2.1: PC6300, PC6400, PC6600, PC8300, PC8400 and PC8500 Dimensions and Properties

Variable	PC6300	PC6400	PC6600	PC8300	PC8400	PC8500
Concrete Width, b (in)	5.38	6.88	6.38	5.38	6.88	8.31
Concrete Depth, h (in)	5.44	5.44	5.44	7.19	7.19	7.19
Depth to Top Steel, \boldsymbol{d}^{\prime} (in)	1.50	1.50	1.50	1.56	1.56	1.56
Depth to Bottom Steel, d (in)	3.94	3.94	3.94	5.62	5.62	5.62
Width of Steel Bracket, s1 (in)	5.00	5.00	5.00	7.00	7.00	7.00
Top \& Bottom Steel Spacing, $s 2$ (in)	2.44	2.44	2.44	4.06	4.06	4.06
Steel Distance to Bracket Edge, s3 (in)	1.28	1.28	1.28	1.47	1.47	1.47
Area of Top Steel, $\boldsymbol{A}_{s}{ }^{\prime}$ $\left(\mathrm{in.}{ }^{2}\right)$	0.40	0.40	0.40	0.62	0.62	0.62
Area of Bottom Steel, A_{s} (in. ${ }^{2}$)	0.40	0.40	0.40	0.62	0.62	0.62
Steel Yield Strength, f_{y} (lbf/in. ${ }^{2}$)	60,000	60,000	60,000	60,000	60,000	60,000
Concrete Comp. Strength, $f_{c}{ }^{\prime}\left(\mathbf{l b f} /\right.$ in. $\left.^{2}\right)$	10,000	10,000	10,000	10,000	10,000	10,000
Steel MOE, E_{s} (lbf/in. ${ }^{2}$)	29000000	29000000	29000000	29000000	29000000	29000000

Table 2.2: Standard S4S (Surfaced Four Sides) Wood Column Dimensions and Properties

Property	$\mathbf{6 x 6}$	3ply x 6	3ply x 8	4ply x 6	4ply x 8	5ply x 8
Width, b (in)	5.50	4.50	4.50	6.00	6.00	7.50
Depth, d (in)	5.50	5.50	7.25	5.50	7.25	7.25
Area, A (in ${ }^{2}$)	30.25	24.75	32.63	33.00	43.5	54.38
Section Modulus, \mathbf{S} (in $^{\mathbf{3}}$)	27.73	22.69	39.42	30.25	52.56	65.70
Moment of Inertia, $\mathbf{I}\left(\mathbf{(i n}^{4}\right)$	76.26	62.39	142.90	83.19	190.54	238.17

Table 2.3: Planed Wood Column Dimensions and Properties

Property	3ply x 6	3ply x 8	4ply x 6	4ply x 8	5ply x 8
Width, b (in)	4.50	4.50	6.00	6.00	7.50
Depth, d (in)	5.31	7.19	5.31	7.19	7.19
Area, A (in 2)	23.90	32.36	31.86	43.14	53.93
Section Modulus, S $\left(\right.$ in $^{\mathbf{3}}$)	21.15	38.77	28.20	51.70	64.62
Moment of Inertia, I (in 4)	56.15	139.39	74.86	185.85	232.31

Table 2.4: Glulam Column Dimensions and Properties

Property	3ply x 6	3ply x 8	4ply x 6	4ply x 8	5ply x 8
Width, b (in)	4.063	4.063	5.375	5.375	6.72
Depth, d (in)	5.25	7.00	5.25	7.00	7.00
Area, A (in')	21.33	28.44	28.22	37.63	47.04
Section Modulus, S (in $^{\mathbf{3}}$)	18.66	33.18	24.69	43.90	54.88
Moment of Inertia, I (in ${ }^{4}$)	49.0	116.12	64.81	153.64	192.08

Figure 2.1 shows the orientation of the column laminations in relation to the load. Wind load is taken by uniaxial bending about axis Y-Y. The provisions of this design guide do not apply to columns subject to biaxial bending. Figure 2.2 is a definition sketch showing embedment depth, orientation of the column, and direction of wind loading on the assembly. The Perma-Column assembly is assumed to be braced in the out-of-plane direction by girts spaced 24 inches on center. Wind load calculations for a sample post-frame building per ASCE 7-05 as referenced in IBC 2009 and ASCE 7-10 as referenced in IBC 2012 are included in Appendix 1.

Figure 2.1 Wood Column Orientation

Figure 2.2 Perma-Column load definition sketch

3. Reinforced Concrete Base Column Design

The reinforced concrete component is manufactured with $10,000 \mathrm{psi}$ (nominal) precast concrete and four (4) 60,000 psi vertical reinforcing bars. Number 4 bars are used for the PC6300, PC6400, and PC6600, while number 5 bars are used for the PC8300, PC8400, and PC8500 models. The required concrete cover for reinforcing bars in precast concrete is less than cast-in-place concrete because of better placement accuracy during the manufacturing process. Each of the Perma-Column models meet the minimum concrete cover of 1.25 inches required for precast concrete components that are exposed to earth or weather. The high concrete strength and quality is achieved by adding superplasticizer, which increases strength by allowing a low water-to-cement ratio. Fiber reinforcers are added to reduce shrinkage, increase impact resistance, and increase flexural strength. Other admixtures are included in the concrete mix to increase freeze/thaw resistance, protect the steel reinforcement from rusting, increase flexural and compressive strength, and optimize the hydration process.

4. Structural Reinforcing Bracket Assembly Design

Figure 4.1 shows dimensions for the different structural reinforcing bracket assemblies that are used with the Perma-Column assemblies. The brackets consist of $1 / 4$ " structural grade 40 steel ($\mathrm{F}_{\mathrm{y}}=40 \mathrm{ksi}$) with $5 / 8$ " diameter holes for the bolts, and $5 / 16$ " diameter holes for screws. The bracket connection utilizes $1 / 2$ " diameter A325 bolts in double shear with hex nuts torqued to 110 ft -lbs, and $1 / 4$ " x 3 " strong drive screws (SDS) by Simpson Strong-Tie (or equivalent) in single shear. Typically, one screw is installed from each side of the bracket at each bolt, except the PC8300, PC8400 and PC8500 have two screws on each side at each bolt. These screws help prevent stress concentrations around the bolt which would cause splitting of the wood members. The wood column bears directly on a $1 / 4$ " steel seat plate which helps to transfer axial loads into the concrete base. Four A706 weldable reinforcing bars are inserted in holes in the bottom of the bracket and fillet welded, connecting the bracket to the concrete base.

The internal forces of shear and bending moment are transferred from the wood column through the steel bracket into the concrete base. Section 4.2 of the Perma-Column Test Report states that as long as the reinforced concrete portion of the assembly is shown to adequately handle shear forces, there is no need to check the shear capacity of the bracket. This is because all shear related failures observed in laboratory testing occurred in the reinforced concrete base and not in the bracket. However, it is important to check the bending moment capacity and rotational stiffness of the bracket.

Figure 4.1 Structural Reinforcing Bracket Assemblies

4.1 Bracket Moment Capacity

This joint has significant bending moment capacity and does not need to be modeled as a pin. The laboratory testing for this joint was completed using a $1 / 3$ point loading arrangement that isolates the shear strength and bending strength of the joint as described in Appendix B of the Perma-Column Test Report. It is important to note that testing was performed for strong axis bending only. The bending strength of both the concrete-to-steel bracket and the steel bracket-to-wood column connections must be evaluated in order to determine the overall moment capacity of the joint.

The reinforcing bars transfer shear and moment between the concrete base and the steel bracket. The failure modes observed in the laboratory testing are 1) concrete crushing and 2) tension steel fracture (see Figure B. 5 and B. 6 in the Perma-Column Test Report). Nomenclature for this section is taken from AISC. The nominal bending strength, M_{n}, of the concrete-to-steel bracket connection is given in Table 4.1a, and is defined in the following expression: $\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{0.03}$, where $\mathrm{M}_{0.03}$ is the bending moment corresponding to 0.03 radians rotation in Table B. 2 of the Perma-Column Test Report. 0.03 radians was chosen as a limit state as recommended in Section 4.1 of the Perma-Column Test Report. For Strength Design (LRFD), the design flexural strength of the concrete-to-steel bracket connection is expressed as: $\varphi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}}$, where $\varphi_{\mathrm{b}}=0.90$; and for Allowable Stress Design (ASD), the allowable flexural strength is expressed as: $\mathrm{M}_{\mathrm{n}} / \Omega_{\mathrm{b}}$, where $\Omega_{\mathrm{b}}=1.67$.

The bolts and screws transfer shear and moment between the steel bracket and wood column. The shear strength of the fasteners themselves, not the steel bracket, control the bending strength of this joint. The bolt and screw design, as well as the nomenclature for moment capacity using LRFD and ASD, is done according to the 2012 NDS. Forces from the moment couple are applied to the upper and lower fastener groups and are distributed to the bolt and screws according to their respective stiffness as described in Section 6.1 of the Perma-Column Test Report. The unadjusted moment capacity, M , of the steel bracket-to-wood column connection is given in Table 4.1b and is determined by calculation (See Appendix 2 for calculations). The bolt yield strength was taken as the proof stress for an A325 bolt. For Strength Design (LRFD), the design moment capacity of the steel bracket-towood column connection is expressed as: $\mathrm{M}^{\prime}=\mathrm{M}\left(\mathrm{K}_{\mathrm{F}}\right)\left(\phi_{\mathrm{z}}\right)(\lambda)$, where $\mathrm{K}_{\mathrm{F}}=3.32, \varphi_{\mathrm{z}}=0.65$ and $\lambda=1.0$; and for Allowable Stress Design (ASD), the adjusted allowable moment capacity is expressed as: as: $\mathrm{M}^{\prime}=\mathrm{M}^{\prime}\left(\mathrm{C}_{\mathrm{D}}\right)$, where $C_{D}=1.6$ for wind loading.

Table 4.1a: Concrete-to-Steel Bracket Connection Bending Strength (in-kip)

Series	Nominal Bending Strength, $\mathbf{M}_{\mathrm{n}}{ }^{1}$	Design Flexural Strength (LRFD) $\varphi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}}$	Allowable Flexural Strength (ASD) $\mathbf{M}_{\mathrm{n}} / \boldsymbol{\Omega}_{\mathrm{b}}$
PC6300	59.4	53.5	35.6
PC6400	59.0	53.1	35.3
PC6600	59.0	53.1	35.3
PC8300	103.7	93.3	62.1
PC8400	111.8	100.6	67.0
PC8500	111.8	100.6	67.0

Notes:

1. Interpolated from Table B. 2 in the Perma-Column Test Report at $\theta=0.03$
2. $\varphi_{b}=0.90$ (from AISC)
3. $\Omega_{b}=1.67$ (from AISC)

Table 4.1b: Steel Bracket-to-Wood Column Connection Bending Strength (in-kip) ${ }^{4}$

Comparing the corresponding columns of Tables 4.1 a and 4.1 b , it is clear that the steel bracket-to-wood column connection controls the bending strength of the joint in most cases. The design flexural strength (LRFD) of the PC6400 concrete-to-steel bracket connection is 53.1 in-kip from Table 4.1a, and the design moment capacity (LRFD) is 63.3 in-kip from Table $4.1 \mathrm{~b} .53 .1<63.3$ so the Table 4.1 a value controls. For all other cases, the bending strength given in Table 4.1b for the steel-to-wood connection controls.

4.2 Bracket Rotational Stiffness

The rotational stiffness of the steel bracket connection depends upon both concrete-to-steel, and steel-to-wood movement. Table B. 2 and Figure B. 4 in the Perma-Column Test Report (also in Appendix 3 of this document) show joint rotation versus bending moment data for the steel bracket-to-concrete connection. As indicated in Section 4.1, the steel bracket-to-wood connection controls the allowable flexural strength of the bracket for all cases except the PC6400. From Figure B. 4 of the Perma-Column Test Report, the allowable flexural strength of the steel-to-wood column connection occurs approximately at 0.01 radians rotation. Therefore, the rotation, θ, of 0.01 radians, and the corresponding bending moments, M , should be used to establish the rotational stiffness of each bracket defined as M / θ. This point on the joint rotation versus bending moment curve (See Appendix 3) best represents the stiffness the bracket will have when loaded. Table 4.2 shows the calculated stiffness values for the concrete-to-steel and the steel-to-wood joints. These stiffness values are needed in order to create a model per Section 6 of this guide.

The stiffness of the steel-to-wood connection is controlled by the slip modulus for the bolts and screws, and is discussed in Section 6 of the Perma-Column Test Report. The slip modulus should be assigned to the fastener group by taking the sum of the values of the individual fasteners in the group. The slip modulus for the $1 / 2$ " bolt in double shear is 85.5 kips per inch, and for each screw is 28.7 kips per inch. The actual distance between the centroids of the fastener groups can be calculated based upon the stiffness and location of each fastener. This value is given in Table 4.2 for each model and is also included on a sketch in Appendix 3.

Table 4.2: Steel Bracket Connection Stiffness Values

Series	Concrete-to-Steel Bracket Stiffness, $\mathbf{M}_{\mathbf{0 . 0 1}} / \boldsymbol{\theta}(\mathbf{i n -}$ $\mathbf{k i p} / \mathbf{r a d})^{\mathbf{1}}$	Steel Bracket-to-Wood Column Stiffness (in-kip/rad)	Distance Between Fastener Groups Based Upon Stiffness (in) ${ }^{\mathbf{2}}$
PC6300	2570	4570	8.25
PC6400	2990	12075	13.25
PC6600	2990	4570	8.25
PC8300	5770	12120	11.6
PC8400	6470	12120	11.6
PC8500	6470	12120	11.6

1. Calculated from Table B. 2 in the Perma-Column Test Report
2. From Calculations in Appendix 3

4.3 Friction

The moment capacity and rotational stiffness of the steel bracket-to-wood joint is enhanced by friction produced by the tendency of the bracket to pinch together as the bending moment increases. No increases were taken in the Perma-Column Test Report for this phenomenon, but it remains as an additional safety factor against steel-towood connection failure.

5. Laminated Wood Column Design

The wood portion of the Perma-Column assembly is designed using the ASD methodology in accordance with the NDS by $A W C$ as discussed in Section 1 of this guide. The wood design values used in this work are shown in Tables 5.1 through 5.3. Southern Pine design values for mechanically laminated columns are taken from the Southern Pine Inspection Bureau (SPIB) Supplement Number 13 which went into effect June 1, 2013. Design procedures were taken from ASAE EP559.1 Design Requirements and Bending Properties for MechanicallyLaminated Wood Assemblies. Design procedures for glulams were taken from the NDS by AWC. Table 5.4 contains adjustment factors to be applied to the wood design values.

Table 5.1: \#1 Southern Pine Standard S4S (Surfaced Four Sides) Wood Column Design Values

Property	6x6	3ply $\times 6$	3ply x 8	4ply $\times 6$	4ply x 8	5ply x 8
Flexure, $\mathrm{F}_{\mathrm{b}}(\mathrm{psi})^{1}$	1350	1350	1250	1350	1250	1250
Shear, F_{v} (psi)	165	175	175	175	175	175
Axial Compression, \mathbf{F}_{c} (psi)	990	1550	1500	1550	1500	1500
Modulus of Elasticity, E ($\mathbf{1 0}^{6}{ }^{6} \mathbf{p s i}$)	1.3	1.6	1.6	1.6	1.6	1.6
Minimum MOE, $\mathrm{E}_{\text {min }}\left(\mathbf{x 1 0}{ }^{6} \mathbf{p s i}\right)$	0.47	0.58	0.58	0.58	0.58	0.58

Table 5.2: \#1 Southern Pine Planed Wood Column Design Values

Property	$3 \mathrm{ply} \times 6$	3ply $x 8$	4ply x 6	4ply x 8	5ply x 8
Flexure, $\mathrm{F}_{\mathrm{b}}(\mathbf{p s i})^{1}$	1350	1250	1350	1250	1250
Shear, $\mathrm{F}_{\mathrm{v}}(\mathrm{psi})$	175	175	175	175	175
Axial Compression, $\mathbf{F}_{\mathbf{c}}(\mathbf{p s i})$	1550	1500	1550	1500	1500
Modulus of Elasticity, E ($\mathbf{x 1 0}^{6}{ }^{\text {psin }}$)	1.6	1.6	1.6	1.6	1.6
Minimum MOE, $\mathrm{E}_{\text {min }}\left(\mathbf{x} 10^{6} \mathbf{~ p s i}\right)$	0.58	0.58	0.58	0.58	0.58

1. Bending design values have been adjusted for size $\left(C_{F}\right)$

Table 5.3: Glulam Column Design Values ${ }^{1}$

Property	3ply x 6	3ply x 8	4ply x 6	4ply x 8	5ply x 8
Flexure, $\mathbf{F}_{\text {b }}$ (psi)	2050	1900	2350	2350	2350
Shear, F_{v} (psi)	300	300	300	300	300
Axial Compression, $\mathrm{F}_{\mathrm{c}}(\mathbf{p s i})$	2150	2150	2150	2150	2150
Modulus of Elasticity, E (x10 $\left.{ }^{6} \mathbf{~ p s i}\right)$	1.7	1.7	1.7	1.7	1.7
Minimum MOE, $\mathrm{E}_{\text {min }}\left(\times 10^{6} \mathbf{p s i}\right)$	0.88	0.88	0.88	0.88	0.88

1. Design values from published values of a representative manufacturer

Table 5.4: Adjustment Factors for Design Values

		$\overline{C_{D}}$	См		$\overline{C_{t}}$	$\overline{C_{L}}$	$\overline{C_{F}}$	$\overline{C_{f u}}$		$\begin{aligned} & \text { VG, ASAE } \\ & \text { P559.1) } \end{aligned}$	$\overline{C_{P}}$
		(NDS)	Wet	Dry	(NDS)	(NDS)	(NDS)	(NDS)	3-ply	4-ply \& 5-ply	(NDS)
$\mathrm{Fb}^{\prime}=\mathrm{F}_{\mathrm{b}}$	x	1.60	0.85	1.00	1.00	1.00	1.00	1.00	1.35	1.40	-
$\mathrm{F}_{\mathrm{t}}{ }^{\prime} \mathrm{F}_{\mathrm{t}}$	x	The columns in this analysis are not loaded in tension, this section does not apply									
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	1.60	0.97	1.00	1.00	-	-	-	-	-	-
$\mathrm{F}_{\mathrm{cp}}{ }^{\prime}=\mathrm{F}_{\mathrm{cp}}$	x	-	0.67	1.00	1.00	-	-	-	-	-	-
$\mathrm{Fc}^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	1.15	0.80	1.00	1.00	-	1.00	-	-	-	Varies
$E^{\prime}=E$	x	-	0.90	1.00	1.00	-	-	-	-	-	-
$\mathrm{Emin}^{\prime}=\mathrm{E}_{\text {min }}$	X	-	0.90	1.00	1.00	-	-	-	-	-	-

No wet service reductions have been used for the Perma-Column assemblies since the wood portion is not in contact with the soil or concrete and is assumed to be used within an enclosed building. The wet service reduction factor is shown in Table 5.4 and it is different for each variable. There are no splices in the wood laminations. Axial load is assumed to be transferred by direct bearing on the seat plate and not through bolts or screws. Buckling length for bending about the strong axis is one foot less than the overall column height because the concrete portion extends one foot above grade. Structural analyses were performed using \#1 Southern Yellow Pine (SYP) and \#2 and better Spruce Pine Fir (SPF) with planed or standard dressed mechanically laminated lumber.

The column laminations for the mechanically laminated columns are assumed to be fastened together with two rows of 0.131 " minimum diameter nail or wire fasteners using a 9 inch maximum on center spacing and a nailing pattern with near side and far side installation as shown in Figure 5.1. The minimum fastener length is 3.75 " for 3 ply and 4 ply columns, and 4.5 " for 5 ply columns. Fastener calculations are given in Appendix 2. Alternatively, it is acceptable for the fasteners to penetrate all the way, or nearly all the way, through the column width.

Construction structural adhesive may be applied between the plies on each face, but it was not included in the calculations for the mechanically laminated columns. The mechanical fasteners alone are adequate to resist the Minimum Required Interlayer Shear as listed in Table 4 of ASAE EP559.1.

Figure 5.1 Wood Column Fastening Pattern
Glulam columns are also included in Table 7.1 in Section 7. Glulam columns have no mechanical fasteners and they depend heavily on the glue applied between the laminations.

6. Modeling

Figure 6.1 shows an example of the structural analogs that were used to check each Perma-Column assembly. The structural analysis was performed using Visual Analysis by Integrated Engineering Software. The structural analog was created with element stiffness values that closely simulate laboratory test results. These structural analogs can be used to predict Perma-Column assembly behavior under many different load conditions. Three post models were analyzed for each height to simulate different boundary conditions at the eave.

- Eave Condition I assumes a very rigid diaphragm which allows no horizontal movement at the eave. The deflection limit for this condition is L/120 for walls without brittle finishes and is controlled by curvature of the post.
- Eave Condition II allows horizontal movement corresponding to the eave height divided by 240 (L/240). The deflection limit for this condition is L/240 for walls with brittle finishes and is controlled by sidesway at the eave or, on taller columns, at the location of additional curvature of the column.
- Eave Condition III allows horizontal movement corresponding to the eave height divided by 120 (L/120). The deflection limit for this condition is $\mathrm{L} / 120$ for walls without brittle finishes and is controlled by sidesway at the eave or, on taller columns, at the location of additional curvature of the column.

Column deflection should be checked using service loads and deflection limits are taken from IBC 2012 Table 1604.3 for exterior walls with brittle or flexible finishes, $\mathrm{L} / 240$ and $\mathrm{L} / 120$, respectively. These eave displacements were evaluated using ASD load combinations, mainly dead plus wind ($\mathrm{D}+\mathrm{W}$), and the larger of sidesway or curvature was taken as the controlling value. Horizontal movement is created in the models for these two eave conditions by using a spring support in place of a roller support with the spring constant adjusted to allow the appropriate amount of deflection.

The concrete element for each Perma-Column model was created using a concrete modulus of elasticity, E_{c}, of 5.7 million psi, and an effective moment of inertia, I_{e}, as given in Appendix 3 (see also Table 5.2.1 in the PermaColumn Test Report). I_{e} for the PC6600 was matched with I_{e} for PC6400 for modeling purposes. Similarly, I_{e} for
the PC8500 was matched with I_{e} for PC8400. Bending, axial and shear strength properties of the reinforced concrete are summarized in Appendix 3 of this document. For a detailed discussion, see Section 3 of the PermaColumn Test Report. Element "PC" of the analogs shown in Figure 6.1 represents the reinforced concrete base.

Element "SC" in the analog represents the concrete-to-steel bracket connection. The purpose of this element is to model the bending flexibility of the steel bracket where it attaches to the concrete. This element was assigned a modulus of elasticity, E_{s}, of 29 million psi, an effective length, L_{e}, of 2.5 inches, and an effective moment of inertia, I, equal to $\mathrm{S}\left(\mathrm{L}_{\mathrm{e}}\right) / \mathrm{E}_{\mathrm{s}}$ where S is the rotational stiffness from Table 4.2. Table 6.1 summarizes the moment of inertia used for the steel bracket elements.

Eave Condition I Analog

Eave Condition II \& III Analog

Figure 6.1 Structural Analogs for a Column with Pin or Spring at Top
Table 6.1: Moment of Inertia, I, For Steel Bracket Elements (in $\left.{ }^{4}\right)^{1}$

Series	Concrete-to-Steel Bracket Element "SC"	Steel Bracket-to-Wood Column Element "SW"
PC6300	0.2462	1.2615
PC6400	0.2515	5.4130
PC6600	0.2515	1.2615
PC8300	0.4769	4.5965
PC8400	0.4711	4.5965
PC8500	0.4711	4.5965
	Note:	

1. From Calculations in Appendix 3

Element "SW" in the analog is used to model the steel bracket-to-wood column connection. This element extends between the fastener groups and models the rotation between steel and wood. The length varies depending upon the distance between the centroids of the two fastener groups. In the structural models, 8 inches was used for PC6300 and PC6600, 13 inches for PC6400, and 11 inches for PC8300, PC8400, and PC8500 (see Figure 4.1).

Element "W" in the analog represents the laminated or solid sawn wood column with an E value of 1.6 million psi for \# 1 SYP, and 1.4 million psi for \#2 and better SPF.

The post foundation was modeled assuming a 4'-0" embedment depth. A pin was used at the bottom, and a vertical roller at $1 / 3$ the embedment depth to simulate a non-constrained post foundation. After the structural analog was created and the loading applied, a P-delta analysis was performed for columns with eave conditions II and III to account for increased section forces induced by column deflection.

7. Perma-Column Design Chart

Table 7.1 shows the allowable vertical load, P, for Perma-Column assemblies under a uniform wind load of 100 pounds per linear foot (plf) for wind loads calculated per ASCE 7-05 and 165 plf if wind loads are calculated per ASCE $7-10$. The post heights evaluated range from $10^{\prime}-0^{\prime \prime}$ up to $22^{\prime}-0$ " in two foot increments. Blank boxes in the chart indicate the column fails in deflection due to the uniform wind load. The failure modes checked are as follows:

1. Deflection Due to Service Loads
2. Wood Elements
a. Axial load
b. Combined axial and bending moment
c. Shear
3. Steel Bracket-to-Wood Column Connection Element
a. Maximum bending moment in element
4. Concrete-to-Steel Bracket Connection Element
a. Maximum bending moment in element
5. Concrete Elements
a. Factored bending moment and axial force compared to Interaction Diagram in Appendix 3 (see also Figure 3.3.2 in the Perma-Column Test Report)
b. Factored shear forces compared to design shear strength in Appendix 3 (see also Table 3.4.1 in the Perma-Column Test Report)

The notes at the bottom of Table 7.1 describe the assumptions and conditions to which these allowable vertical loads apply. The effective buckling length factor, K_{e}, was taken as 0.8 for columns fixed at the base and pinned at the top (Eave Condition I in Table 7.1). The exact buckling mode case for columns fixed at the base and pinned at the top with a small amount of translation allowed (Eave Conditions II and III in Table 7.1) is not given in classical tables for K_{e}. Because these columns are part of a diaphragm assembly where the horizontal movement is small compared to the height of the column, K_{e} is assumed to be 1.0. It is important to note that the structural analogs used to create these charts have a support at the top of the post to simulate resistance to horizontal loads due to diaphragm action. Additional wind bracing or knee braces may be needed in the building design if no diaphragm resistance is present. This is important to remember when using the PC6600 as a replacement post as well. The overall building design should be evaluated to verify that the replacement post is adequate.

The main controlling factors in the calculations behind this chart are the imposed deflection limits, and the strength of the wood portion of the column. A 6×6 \#2 pressure-treated column, a 3 ply 2×6 \#1 SYP pressure-treated non-spliced column, and a 4 ply 2×8 \#1 SYP column with structural finger joints using the same wind load and boundary conditions are included in Table 7.1 for comparison purposes. These comparison columns are designed as traditional embedded post-frame foundations with treated wood in the ground. It is important to note that the 4 ply $2 x 8$ embedded post has treated laminations in the ground and non-treated above grade. The joint between these laminations is a certified structural finger joint as defined in ASAE EP 559.1. The PC6300 and PC8400 perform significantly better than their 3 ply 2×6 and 4 ply $2 x 8$ counterparts mainly because they have no wet service reduction, and the maximum bending moment is resisted by the concrete component below grade.

In some circumstances, the calculated loads may exceed the capacity of a single Perma-Column. A typical example of this is on either side of large door openings. Figure 7.1 shows an installation detail for a double Perma-Column. The uniform wind load and the allowable vertical load can both be doubled for Perma-Columns installed as per this detail, if header framing and wall girts are provided to allow both columns to share the load equally. In addition, the footings on either side of large door openings need to be sized appropriately for the increased vertical and lateral loads they will carry.
Table 7.1 Perma-Column Design Chart

Building Eave Height (ft)			Allowable vertical load, P (lbs), for Perma-Column assemblies under constant wind load																				
			10			12			14			16			18			20			22		
Eave Conditions Max Deflection (in)			1	11	III	1	1	III	1	11	III	1	II	III	1	11	III	1	11	III	1	1	III
			1	0.5	1	1.2	0.6	1.2	1.4	0.7	1.4	1.6	0.8	1.6	1.8	0.9	1.8	2	1	2	2.2	1.1	2.2
令	PC6600	6x6 \#1 SYP	24400	21600	21700	21900	17700	17700	17400	12000	12500	12000		8200	8200								
	PC6300	3 ply $\times 6$	31600	24400	24200	24500	16600	17100	16400	10800	11100	11100		7400	7600								
	PC6400	4 plyx 6	42000	32600	32100	33500	23800	23600	24200	16100	16500	17000	11000	11300	12100		7900	8700					
	PC8300	3 ply $\times 8$	48000	42600	42400	43200	35000	34700	37300	27600	27200	30500	20700	20700	22500	15000	15600	17000	11000	11600	12800		8600
	PC8400	4 ply x 8	64000	56900	48000	57600	46700	46300	49600	37200	36800	41600	29600	28700	32800	22000	22500	25100	18200	17000	19500	13700	13000
	PC8500	5 ply 88	79600	71000	48400	71600	58300	52000	61600	46400	46400	51700	37000	36600	42800	28700	29000	33000	24100	22300	25900	18400	17000
	PC6300	3 ply $\times 6$	29400	22400	22400	21900	14800	15200	14500	9500	9900	9700		6500	6600								
	PC6400	4 plyx 6	39000	29600	29600	30600	21500	21600	21600	14300	14700	15000	9700	10000	10700		6900	7600					
	PC8300	3 ply 88	47900	42000	40500	42800	34000	34000	36400	27200	25900	28900	19700	19800	21300	14100	14700	15900	10300	10800	11900		7900
	PC8400	4 ply 8	63200	55200	41100	56800	46000	46000	48800	36000	36000	40400	28300	27600	31200	20800	21300	23800	15600	16100	18200	11800	12200
	PC8500	5 ply $\times 8$	79600	70000	48300	71400	57200	56800	61200	45600	45600	51200	36000	35800	40800	27400	28000	31400	22900	21300	24400	17400	15900
$\frac{\text { E }}{\text { E }}$	PC6300	3 ply $\times 6$	41200	31600	31200	30000	19800	20400	19600	12700	13200	13200		8700	8900		5700						
	PC6400	4 plyx 6	54400	41800	37200	43200	29300	29400	29600	19500	19900	20700		13600	14800		9600						
	PC8300	3 ply 88	64000	57600	42800	58400	47600	42700	50800	36000	32800	37600	25200	24900	27400	17900	18800	20200	13000	13700	15000		10000
	PC8400	4 ply x 8	84000	76000	47200	78000	62400	52800	66800	48500	46000	55200	37300	35600	41600	27500	27700	31800	22800	21200	24600		16300
	PC8500	5 ply 88	106000	81300	47700	96800	78000	56000	84000	61200	60600	69600	47600	46600	54200	35900	36200	41700	30100	27800	32600	23000	22600
䓂	PC6300	3 ply $\times 6$	26600	20900	20900	20400	14000	14300	13500	8900	9200	8900		6000	6000								
\#	PC6400	4 ply $\times 6$	35400	27700	27800	28400	20400	20700	20300	13500	13900	14100	9100	9300	9900		6400	4500					
Colored boxes are for easy strength comparison																							

Building Eave Height (ft) Eave Conditions Max Deflection (in)	Comparison to traditional embedded, pressure-treated wood columns - allowable vertical load, P (lbs)																				
	10			12			14			16			18			20			22		
	I	11	III	1	11	III	1	11	III	1	1	III	1	11	III	1	1	III	1	1	III
	0	0.5	1	0	0.6	1.2	0	0.7	1.4	0	0.8	1.6	0	0.9	1.8	0	1	2	0	1.1	2.2
$6 \times 6 \# 2$ trd SYP	15600	13800	12200	13500	9900	8100	9100	9400													
3 ply $\times 6$ trd. \#1 SYP*	24000	17400	15400	17400	11600	10200	11800	7900	6900	8100		4700	5600								
4 ply x 8 \#1 SYP**	59200	51200	50400	54000	41200	36800	45400	31200	27500	38000	23300	21000	29700	17700	16000	22900	13800	12300	17700		9500
3 ply $\times 6$ Glulam	36800	24600	22000	24600	16400	14600	16600	10900	9900	11500		7000	8000								
4 ply $\times 8$ Glulam	67600	67600	67600	67600	54800	49100	60800	40000	35600	48800	29400	26800	37200	22400	20500	28800	17400	15700	22200		12300
* Standard S4S mechanically laminated non-spliced fully treated column ** Standard SFS mechanically laminated column with certified structural finger joints between treated and untreated laminations																					

Chart Assumptions: ** Standard SFS mechanically laminated column with certified structural finger joints between treated and untreated laminations

[^1]

Figure 7.1 Double Perma-Column installation detail

8. Design Example

This design example is for a PC8300 with a 3 ply 2×8 \#1 Southern Pine planed, mechanically laminated wood column. The column is 16 ' high and the eave is allowed to deflect horizontally 1.6 inches ($\mathrm{L} / 120$). The vertical load is 4.5 kips dead load and 13.5 kips snow load. The horizontal loading is 100 plf due to wind loading calculated per ASCE 7-05. All assumptions listed in the chart apply to this example, as does the structural analog with a spring shown in Figure 6.1. This is a summary of the design process; the detailed calculations are available in Appendix 4 of this document.
8.1 The controlling load combinations for the given dead, snow, and wind loading are as follows A. ASCE 7-05 ASD (Wood column and steel bracket)
1)

D + W
2) $D+S$
3) $\mathrm{D}+0.75 \mathrm{~S}+0.75 \mathrm{~W}$
B. ASCE 7-05 LRFD (Concrete column and steel bracket)

1) $1.2 \mathrm{D}+1.6 \mathrm{~S}+0.8 \mathrm{~W}$
2) $1.2 \mathrm{D}+0.5 \mathrm{~S}+1.6 \mathrm{~W}$
3) $0.9 \mathrm{D}+1.6 \mathrm{~W}$
8.2 The column is analyzed for the given loading and the failure modes checked as outlined in Section 7 above.
8.2.1 Actual deflections $(\mathrm{D}+\mathrm{W})$ are within allowable of $16(12) / 120=1.6$
8.2.2 The maximum internal forces in the wood elements are:
a. Load Combination A1: $\mathrm{M}_{\text {max }}=20.7$ inch-kips and $\mathrm{P}_{\text {max }}=4.6 \mathrm{kips}$
b. Load Combination A2: $\mathrm{M}_{\max }=0$ inch-kips and $\mathrm{P}_{\max }=18.1 \mathrm{kips}$
c. Load Combination A3: $\mathrm{M}_{\text {max }}=16.8$ inch-kips and $\mathrm{P}_{\text {max }}=14.7 \mathrm{kips}$
8.2.3 The interaction value in the combined axial force and bending moment check is 0.83 and 0.82 for load combinations A2 and A3 respectively, <1.0 [OK]
8.2.4 The allowable shear capacity of a 3 ply 2 x 8 \#1 SYP member is $280 \mathrm{psi}(40,320 \mathrm{psf})$. The maximum shear is $38 \mathrm{psi}(5438 \mathrm{psf})$.
[OK]

Shear Diagram
(Comb A1 and B3)

Moment Diagram
(Comb A1 and B3)

Figure 8.1 Shear and Moment diagram for PC8300, 16' high with 1.6" maximum deflection under load combination A1
8.2.5 Steel Bracket-to-Wood Connection Element SW
8.2.5.1 The bending moment on the connection produces an equal and opposite force on the top and bottom fastener groups. The maximum moment in bracket-to-wood element is 29.3 inch-kips (ASD). The resultant load on each fastener group is 2.66 kips assuming a distance of 11 inches between the centroid of each group. The force on one bolt and four screws is 1.08 kips and 1.45 kips respectively. The allowable capacity of (1) $1 / 2 "$ bolt with steel side plates loaded in double shear and of (4) $1 / 4 "$ SDS screws with steel side plates loaded in single shear is 2.19 kips and 2.69 kips respectively.
[OK]
8.2.6 Concrete-to-Steel Bracket Connection Element SC
8.2.6.1 The maximum moment in the steel bracket element is 31.6 inch-kips (ASD); the allowable flexural strength is $\mathrm{M}_{\mathrm{n}} / \Omega_{\mathrm{b}}=103.7 / 1.67=62.1$ inch-kips as discussed in Section 4.1 of this guide.
[OK]
8.2.6.2 Alternatively, the maximum factored bending moment in the steel bracket element is 54.0 inch-kips (LRFD); the design flexural strength is $\varphi \mathrm{M}_{\mathrm{n}}=0.90(103.7)=93.3$ inch-kips as discussed in Section 4.1 of this guide.
[OK]
8.2.7 Concrete Element PC
8.2.7.1 The maximum factored bending moment and axial forces in the concrete column element are listed below and are well within the envelope of the design bending and axial strength interaction diagram for the PC8300 shown in Appendix 3.
a. Load Combination B1: $\mathrm{M}_{\mathrm{u}}=47.6$ inch-kips and $\mathrm{P}_{\mathrm{u}}=27.4 \mathrm{kips}$
b. Load Combination B2: $\mathrm{M}_{\mathrm{u}}=92.3$ inch-kips and $\mathrm{P}_{\mathrm{u}}=12.5 \mathrm{kips}$
c. Load Combination B3: $\mathrm{M}_{\mathrm{u}}=90.4$ inch-kips and $\mathrm{P}_{\mathrm{u}}=4.3 \mathrm{kips}$
8.2.7.2 The minimum design shear strength of the PC8300 as given in Appendix 3 is 4.5 kips. The factored shear in this example problem is 2.9 kips .
[OK]
This column is adequate for the design loading.

9. Wind Uplift Resistance

Figure 9.1 shows three foundation conditions that may be used with a Perma-Column: the standard design, concrete collar or PC Extender. The wind uplift resistance can be evaluated for each foundation condition using the procedure described in ASAE EP486.1 Shallow Post Foundation Design. The uplift calculations in this section follow the ASD equations of EP486.1, and therefore should be compared with net uplift loads from ASD load combinations in the International Building Code (IBC) to determine adequacy for a particular situation. Upward movement of a Perma-Column post foundation cannot occur without displacing a cone of soil as defined below.

For circular footings and collars:
Circular cast-in place concrete collars displace a conically shaped wedge of soil. The potential resistance of a circular collar, including soil and concrete weight (PC Extender option also includes weight of footing), can be calculated from the following equation:
$U=\alpha G\left[0.33 \pi\left\{[(d-t)+0.5 w / \tan \theta]^{3}(\tan \theta)^{2}-0.125 w^{3} / \tan \theta\right\}-A_{p}(d-t)\right]+0.25 C \pi w^{2} t G+0.25 C A_{p} 5$
Source: ANSI/ASAE EP486.1: Shallow Post Foundation Design
where:
$\mathrm{U}=$ soil and foundation uplift resistance, (kN) lbf
$\alpha=$ soil density, $\left(\mathrm{kg} / \mathrm{m}^{3}\right) 85 \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{C}=$ presumed concrete density, $\left(90 \mathrm{~kg} / \mathrm{m}^{3}\right) 150 \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{G}=$ gravitational constant, $(9.81 \mathrm{~N} / \mathrm{kg}) 1 \mathrm{lbf} / \mathrm{lbm}$
$\mathrm{d}=$ embedment depth, (m) 4 ft
$\mathrm{t}=$ collar thickness, $(\mathrm{m}) 1 \mathrm{ft}$
$\mathrm{w}=$ collar width, (m) ft
For rectangular footings and collars:
Steel uplift angles are fastened to the post displacing a round corner, truncated prismatic wedge of soil radiating above the angles. The uplift resistance from the mass of the truncated prismatic volume is calculated by the following equation:
$U=\alpha G\left[\left(w l-A_{p}\right)(d-t)+(w+l)(d-t)^{2} \tan \theta+0.33 \pi(d-t)^{3} \tan ^{2} \theta\right]+0.25 C A_{p} 5$
Source: ANSI/ASAE EP486.1: Shallow Post Foundation Design
where:
$\mathrm{U}=$ soil uplift resistance, (kN) lbf
$\alpha=$ soil density, $\left(\mathrm{kg} / \mathrm{m}^{3}\right) \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{G}=$ gravitational constant, $(9.81 \mathrm{~N} / \mathrm{kg}) 1 \mathrm{lbf} / \mathrm{lbm}$
$\mathrm{d}=$ embedment depth, (m) ft
$\mathrm{t}=$ steel collar thickness, $(\mathrm{m}) \mathrm{ft}$
$\mathrm{w}=$ width of collar, (m) ft
$\mathrm{l}=$ length of collar, (m) ft
$\mathrm{A}_{\mathrm{p}}=$ post cross sectional area, $\left(\mathrm{m}^{2}\right) \mathrm{ft}^{2}$
$\theta=$ soil friction angle, 26 degrees
Both of the equations above from EP486.1 have been adjusted to include 25% of the self-weight of the 5 foot tall concrete Perma-Column.

Standard Design

PC Extender View 1

Concrete Collar

PC Extender View 2

Figure 9.1 Perma-Column foundation options

The standard foundation installation as shown in Figure 9.1 has a concrete footing to support the PermaColumn for gravity loads and two 50 ksi yield strength galvanized steel angles that provide uplift resistance. The concrete collar option has a concrete footing for gravity loads, and a separate concrete collar for uplift resistance, as well as increased moment resistance for the embedded column. A $1 / 2$ " diameter reinforcing bar is used as a positive attachment to engage the collar. The PC Extender is a steel assembly bolted to the bottom of the Perma-Column. Some of the benefits of this foundation option include deeper embedment depths, a monolithically poured concrete footing and collar, and slightly higher uplift resistance values because the footing weight can be included.

Table 9.1 shows the allowable wind uplift resistance in pounds for these foundation conditions and variations:

1. $2 \times 2 \times 81 / 2 \times 0.134$ " galvanized steel anchor with compacted fill around posts
2. $2 \times 2 \times 12 \times 0.134 "$ galvanized steel anchor with compacted fill around posts
3. 18 " diameter concrete collar with $1 / 2$ "x 12 " reinforcing bar through Perma-Column
4. 24 " diameter concrete collar with $1 / 2 " \times 18$ " reinforcing bar through Perma-Column
5. 18 " diameter concrete footing with 12 " PC Extender
6. 24 " diameter concrete footing with 12 " PC Extender
7. 18 " diameter concrete footing with 24 " PC Extender
8. 24 " diameter concrete footing with 24 " PC Extender

Table 9.1: Allowable Perma-Column Wind Uplift Resistance (Ibs) ${ }^{1}$

Type	Standard		Concrete Collar		12" PC Extender ${ }^{2}$		24" PC Extender ${ }^{2}$	
Series	$\begin{gathered} \hline 2 \times 2 \times 81 / 2 \\ \text { Angles } \\ \hline \end{gathered}$	$\begin{aligned} & 2 \times 2 \times 12 \\ & \text { Angles } \\ & \hline \end{aligned}$	$\begin{gathered} 18 " \\ \text { Collar } \end{gathered}$	$\begin{gathered} 24 " \\ \text { Collar } \end{gathered}$	18" Collar	24" Collar	18" Collar	24" Collar
PC6300	2090	2490	2130	2980	2400	3450	2660	3920
PC6400	2110	2490	2130	2970	2400	3440	2660	3920
PC6600	2100	2490	2130	2980	2400	3450	2660	3920
PC8300	2110	2480	2130	2970	2400	3440	2660	3920
PC8400	2120	2470	2120	2970	2390	3440	2650	3910
PC8500	2130	2460	2120	2960	2390	3430	2650	3910
	Notes:							

1. These values to be compared with calculated net wind uplift from ASD load combinations in IBC
2. The weight of the collar and footing has been added to the uplift resistance calculation

Sample calculations for the different foundation options included in Table 9.1 can be found in Appendix 5. The failure modes that were checked to determine the wind uplift resistance of the standard foundation are uplift resistance of the soil cone, bolt shear capacity, shear rupture at the bolt hole, and steel angle bending capacity. In determining the steel angle bending capacity, it was assumed that the horizontal leg would act as a cantilever, the reaction from the soil on the horizontal leg would be located $1 / 3$ of the distance away from the vertical leg because of the angle stiffness, and the nominal moment strength, $\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{p}},=\mathrm{F}_{\mathrm{y}} \mathrm{Z}</=1.6 \mathrm{~F} \mathrm{~S}$ (per AISC Section F11). Plastic moment behavior will occur near the bolt location first and then move out toward each end of the angle. Since the angles are fastened with only one bolt, it is not realistic to assume that the angles will become fully plastic over their entire length. For calculation purposes, the effective bending length is assumed to be 60% of the total angle length.

10. Summary and Conclusion

The Perma-Column assembly is designed to be the main structural column in a post-frame building and can be used as an alternative to embedded wood posts. Self Compacting Concrete (SCC) technology makes it possible to manufacture a high quality pre-cast concrete product with a low water-to-cement ratio. The 10,000 psi (nominal) compressive strength protects the reinforcing bars by limiting chips and cracks during handling; reduces the effect of freeze-thaw cycles; and provides a smooth, attractive finish. The structural reinforcing bracket assembly can be designed as a moment connection that is capable of resisting loads for most post-frame building applications, and it allows for the use of non-treated wood by keeping the laminations above grade. The wood portion of the Perma-Column assemblies can be any grade or species of lumber, and can be used with different types of wood shapes. This guide contains \#1 Southern Pine and \#2 and better Spruce-Pine-Fir lumber using selected sizes of solid sawn, mechanically laminated and glulam shapes. According to data in Table 7.1, The Perma-Column assembly will enhance the structural performance of the wood counterpart it replaces for decades.

Each Perma-Column component can be modeled using a structural analog with properties corresponding to the results of the laboratory testing, and can be used to simulate the Perma-Column performance in post-frame buildings of various spans and heights. This guide contains the necessary tools and assumptions needed to create a structural model. The calculations used to produce the design chart indicate that the Perma-Column assemblies are limited primarily by overall deflection, and by the strength of the laminated wood members. There are several foundation detail options including concrete collars, steel uplift angles, and foundation extenders that can be used with a Perma-Column to achieve adequate resistance for lateral, gravity and uplift loads for most applications. The Perma-Column assemblies perform significantly better than standard mechanically laminated wood columns under the same boundary conditions primarily because no wet service reduction is required for the concrete component, and the maximum bending moment is resisted by the concrete portion below grade. The Perma-Column is a permanent foundation solution for the post-frame building market.

"THE PERMANENT SロLUTIロN"

[^0]: $3^{\prime \prime}$ minimum rebar coverage as per ACl 318

[^1]: 11) Eave Condition II allows $L / 240$ horizontal movement. Actual deflections based on larger of sides way or curvature,
 12) Eave Condition III allows $\mathrm{L} / 120$ horizontal m ovement. Actual deflections based on larger of sidesway or curvature,

 horizontal deflection limitof $\mathrm{L} / 120$ for walls without brittle finishes | 13) |
 | :--- |
 | 14) Dry usite factor applied to wood portion in Perma-Column assembly; wetuse factor applied to the entirety of the 6×6 - $\# 2$ |

 15) Exterior sidewall post with lateral loading from wind only 17) Non-constrained post foundation designed per ASAE EP 486.1 with $4^{\prime}-0$ " embedment depth 18) Blank in chart represents deflection controls design
 16) Final column design should include a complete building analys is bya Design Professional
 17) This chart is for Perma-Columns used in a norm al post-frame building (enclosed all four sides) where the columns are 2) Design conforms with IBC 2009 and IBC 2012. ASCE 7 Wind design criteria: Building (Risk) Category II, Wind 3) Southern Pine design values are per Southern Pine Inspection Bureau (SPIB) Supplement No. 13. Glulam design IBC 2009 (ASCE 7-05) Load combinations used are: 1) Dead+Snow 2) Dead+.75(Wind+Snow) 3) Dead+Wind
 IBC 2012 (ASCE 7-10) Load combinations used are:1) Dead+Snow 2) Dead+.75(0.6Wind+Snow) 3) Dead+0.6Wind See Tables 2.2,2.3 and 2.4 for member dimensions and properties
 Dead load to total load ratio $=0.25$ Effective length factor, Ke , is 0.8 for Condition I, and 1.0 for Conditions II and III
 18) P-delta analys is used foreave conditions II and IIII to account for forces induced by deflection
